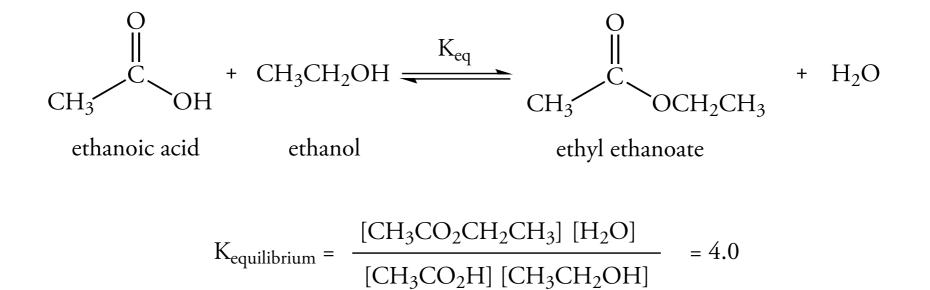
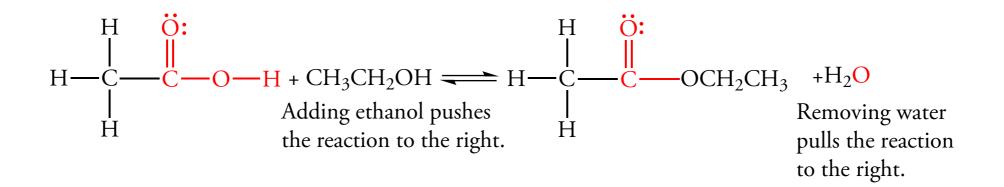

INTRODUCTION TO ORGANIC REACTION MECHANISMS

3.1 ACID-BASE REACTIONS Brønsted-Lowry Acids and Base

3.1 ACID-BASE REACTIONS Lewis Acids


3.2 CHEMICAL EQUILIBRIUM AND EQUILIBRIUM CONSTANTS

aA + bB
reverse reaction


$$K_{equilibrium} = \frac{[C]^{c} [D]^{d}}{[A]^{a} [B]^{b}}$$

$$CH_2 = CH_2 + HBr \iff CH_3 CH_2 Br$$
ethene

$$K_{\text{equilibrium}} = \frac{[CH_3CH_2Br]}{[CH_2=CH_2][HBr]} = 10^8$$

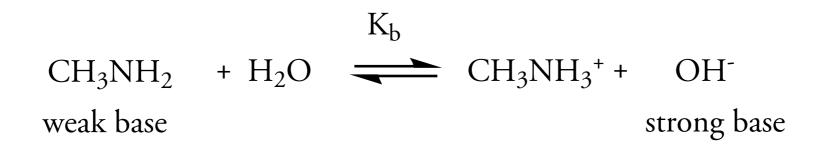
3.2 CHEMICAL EQUILIBRIUM AND EQUILIBRIUM CONSTANTS Le Chatelier's Principle

3.3 pH AND pK VALUES K_a and pK_a

$HA + H_2O \xrightarrow{K_{eq}} A^- + H_3O^+$
$K_{equilibrium} = \frac{[H_3O^+][A^-]}{[HA][H_2O]}$
$K_a = K_{eq}[H_2O] = \frac{[H_3O^+][A^-]}{[HA]}$

 $\begin{array}{cccc} & K_a \\ CH_3CO_2H + H_2O & \textcircled{} CH_3CO_2^- + & H_3O^+ \\ weaker acid & & stronger acid \end{array}$

Table 3.1				
K _a and pK _a Values of Common Acids				
Acid	K	рК _а		
HBr	109	-9		
HCl	107	-7		
H ₂ SO ₄	10 ⁵	-5		
HNO ₃	10 ¹	-1		
HF	6 x 10 ⁻⁴	3.2		
CH ₃ CO ₂ H	2 x 10 ⁻⁵	4.7		
(CF ₃) ₃ COH	2 x 10 ⁻⁵	4.7		
CH ₃ CH ₂ SH	3 x 10 ⁻¹¹	10.6		
CF ₃ CH ₂ OH	4 x 10 ⁻¹³	12.4		
CH ₃ OH	3 x 10 ⁻¹⁶	15.5		
(CH ₃) ₃ COH	1 x 10 ⁻¹⁸	18		
CCl ₃ H	10-25	25		
HC≡CH	10-25	25		
NH ₃	10-36	36		
CH ₂ =CH ₂	10-44	44		
CH_4	10-49	49		


3.3 pH AND pK VALUES K_{b} and pK_{b}

$$A^{-} + H_2O \iff HA + OH^{-}$$
$$K_b = K_{eq}[H_2O] = \frac{[HA][OH^{-}]}{[A^{-}]}$$

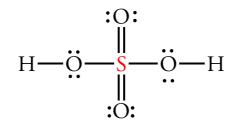
$$A^{-} + H_2O \implies HA + OH^{-}$$
$$K_b = K_{eq}[H_2O] = \frac{[HA][OH^{-}]}{[A^{-}]}$$

Table 3.2 K_{b} and pK_{b} Values of Common Bases Acid K pK_{b} 4 x 10⁻¹⁰ 9.4 -NH₂ CH₃CO₂⁻ 5 x 10⁻¹⁰ 9.3 1.6 x 10⁻⁵ 4.8 C≡N⁻ NH₃ 1.7 x 10⁻⁵ 4.8 $CH_{3}NH_{2}$ 4.3 x 10⁻⁴ 3.4 CH₃O⁻ 3 x 10⁻¹⁶ -1.5

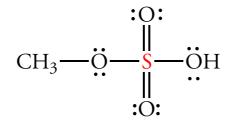
3.3 pH AND pK VALUES K_{b} and pK_{b}

Table 3.3				
$K_{_{b}}$ and $K_{_{a}}$, and $pK_{_{a}}$ and $pK_{_{b}}$ Values of Amines and Ammonium lons				
Compound	K _b	K _a	pK _a	рК _b
NH ₃	1.8 x 10 ⁻⁵	5.5 x 10 ⁻¹⁰	4.74	9.26
CH ₃ NH ₂	4.6 x 10 ⁻⁴	2.2 x 10 ⁻¹¹	3.34	10.7
CH ₃ CH ₂ NH ₂	4.8 x 10 ⁻⁴	2.1 x 10 ⁻¹¹	3.20	10.8
CH ₃ NHCH ₃	4.7 x 10 ⁻⁴	2.1 x 10 ⁻¹¹	3.20	10.8

3.3 pH AND pK VALUES Applying pK_a Values in Organic Acid-Base Reactions


HA + B⁻
$$\Longrightarrow$$
 A⁻ + HB
 $K_{eq} = \frac{K_{HA}}{K_{HB}}$
 $pK_{eq} = pK_{HA} - pK_{HB}$

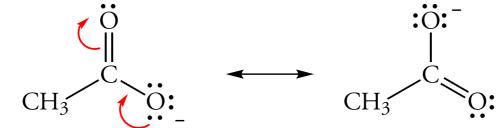
$$H - C \equiv C - H + B^{-} \implies H - C \equiv C^{-} + H - B$$


$$H - C \equiv C - H + H = H^{-} = H - C \equiv C^{-} + H - OH \quad K_{eq} = 10^{-9}$$

$$H - C \equiv C - H + \overline{N}H_{2} \implies H - C \equiv C^{-} + H - \overline{N}H_{2} \quad K_{eq} = 10^{11}$$

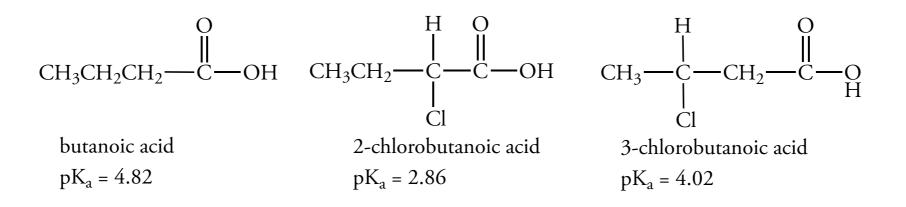
3.4 EFFECT OF STRUCTURE ON ACIDITY Effect of Periodic Trends on Acidity and Basicity

sulfuric acid, a strong acid


methane sulfonic acid, a strong acid

H- \ddot{N} -H H ammonia $pK_b 4.74$ (weak base)

H- \ddot{N} -CH₂CH₃ | H


ethylamine pK_b 3.25 (weak base) **3.4 EFFECT OF STRUCTURE ON ACIDITY** Effect of Resonance on Acidity and Basicity

 $CH_{3}OH + H_{2}O \implies CH_{3}O^{-} + H_{3}O^{+} \quad K_{a} = 10^{-16}$ $CH_{3}CO_{2}H + H_{2}O \implies CH_{3}CO_{2}^{-} + H_{3}O^{+} \quad K_{a} = 1.8 \times 10^{-5}$

Ethanoate ion (acetate), is resonance stabilized, which increases K_a relative to ethanol.

3.4 EFFECT OF STRUCTURE ON ACIDITY Inductive Effects

3.4 EFFECT OF STRUCTURE ON ACIDITY Effect of Hybridization on Acidity

 CH_3 CH_2 CH_2 H $C \equiv C$ H

 ethane
 ethene
 ethyne

 $K_a = 10^{-49}$ $K_a = 10^{-44}$ $K_a = 10^{-25}$

3.5 STANDARD FREE ENERGY CHANGES IN CHEMICAL REACTIONS

The Standard Free Energy Change and the Equilibrium Constant

 $\Delta G^{\circ}_{rxn} = \Delta G^{\circ}_{f} (products) - \Delta G^{\circ}_{f} (reactants)$ $\Delta G^{\circ}_{rxn} = -2.303 RT log K_{eq}$

R = 8.314 kj kelvin⁻¹ mole⁻¹ (1.987 cal kelvin⁻¹ mole⁻¹) T = absolute temperature (kelvin)

Table 3.4 Relation between ΔG° (kJ mole^-1) and $K_{_{eq}}$ at 25 $^{\circ}C$

$X \Longrightarrow Y$					
ΔG°	$K_{_{eq}}$	% Y	ΔG^{o}	$K_{_{eq}}$	%Y
0.00	1.0	50	-4.3	5.67	85
-0.50	1.22	55	-5.45	9.00	90
-1.0	1.50	60	-7.30	19.0	95
-1.5	1.86	65	-9.65	49.0	98
-2.1	2.33	70	-11	99	99
-2.7	3.00	75	-17	999.9	99.9
-3.4	4.00	80	-22	9999.9	99.99

3.6 ENTHALPY CHANGES IN CHEMICAL REACTIONS

 $m A + n B \longrightarrow p X + q Y + energy$

- 1. If heat flows out of the reaction into the surroundings, the reaction is *exothermic*, $\Delta H^{\circ}_{rxn} < 0$.
- 2. If heat flows into of the reaction from the surroundings, the reaction is *endothermic*, $\Delta H^{\circ}_{rxn} > 0$.

Standard conditions, ΔH° , refer to measurements made at 298 K and l atm.

- 1. The standard enthalpy of formation (ΔH_{f}°) of a compound is the enthalpy change when the compound is formed in its standard state from the elements in their standard states. The superscript (°) indicates that the reaction occurs under standard conditions.
- 2. The standard state of any element or compound is its most stable form at 298 K and 1 atm pressure.
- 3. The standard enthalpy of formation of any element in its standard state is defined as 0 kJ mole⁻¹.

 $\Delta H^{\circ}_{_{rxn}} = \left[p\Delta H^{\circ}_{_{f}}(X) + q\Delta H^{\circ}_{_{f}}(Y)\right] - \left[m\Delta H^{\circ}_{_{f}}(A) + n\Delta H^{\circ}_{_{f}}(B)\right]$

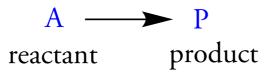
3.7 BOND DISSOCIATION ENERGIES

$$X:Y \longrightarrow X \cdot + Y \cdot \Delta H^{o}_{rxn} > 0$$

 $H \cdot + H \cdot \longrightarrow H:H$ $\Delta H^{o}_{rxn} = -434 \text{ kJ mol}^{-1}$

H:H \longrightarrow H· + H· $\Delta H^{o}_{rxn} = +434 \text{ kJ mol}^{-1}$

 $CH_3 \longrightarrow CH_3 + H \cdot DH^\circ = + 438 \text{ kJ mole}^{-1}$

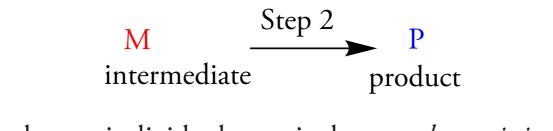

Table 3.5 Bond Dissociation Energies of Representative Compounds

Bond	DH° (kJ mol ⁻¹)	Bond	DH° (kJ mol¹)
H—H	435	CH ₃ —H	438
F—F	159	CH ₃ —F	451
Cl—Cl	242	CH ₃ —Cl	349
Br—Br	192	CH ₃ —Br	293
I—I	150	CH ₃ —I	234
		CH ₃ —OH	380
H—F	586		
H—Cl	431	CH ₃ CH ₂ —H	422
H—I	366	CH ₂ =CH—H	452
Н—ОН	297	HC≡C—H	523

CH ₃ —CH ₃	368
$CH_2 = CH_2$	610
HC≡CH	830

3.8 INTRODUCTION TO REACTION MECHANISMS

Concerted and Multistep Reactions



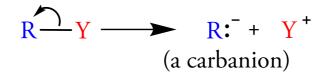
A one step, concerted reaction, has no reaction intermediates.

Multistep reaction. Step 1. An intermediate forms.

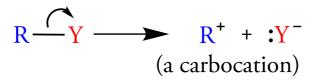
 $\begin{array}{ccc} A & \xrightarrow{\text{Step 1}} & M \\ \hline & & & & \\ \text{reactant} & & & \\ \text{intermediate} \end{array}$

Step 2. The intermediate is converted to product.

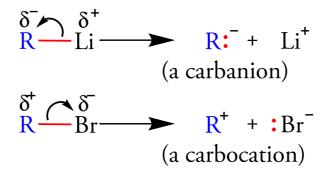
The slowest individual step, is the *rate-determining step*.


Types of Bond Cleavage

 $X \xrightarrow{\frown} Y \longrightarrow X \cdot + Y \cdot$


general reaction for homolytic bond cleavage

 $X \xrightarrow{f} Y \longrightarrow X^+ + :Y^-$


general reaction for heterolytic bond cleavage

A carbanion can act as a Lewis base or as a "nucleus loving" species called a nucleophile.

A carbocation can act as a Lewis acid or as a "electron loving" species called an electrophile.

- 1. If Y is a less electronegative element, such as a metal, the bond tends to break heterolytically to form a carbanion.
- 2. If Y is a nonelectronegative element other than carbon, a halogen atom, for example, the bond has the opposite polarity, and tends to break heterolytically to form a carbocation.

3.9 STRUCTURES AND STABILITIES OF CARBON RADICALS, CARBOCATIONS, AND CARBANIONS

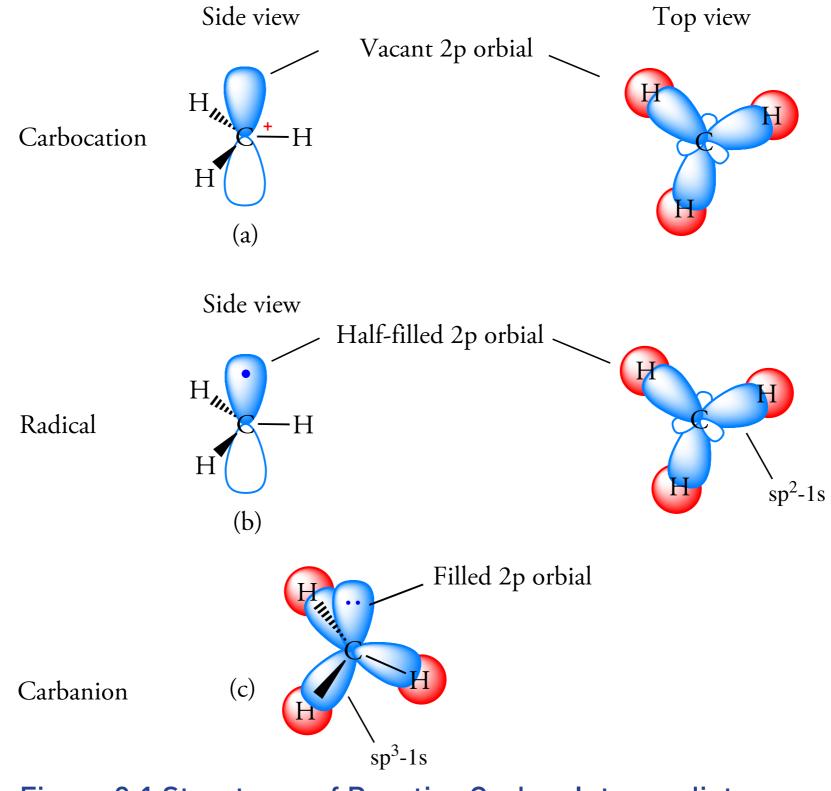
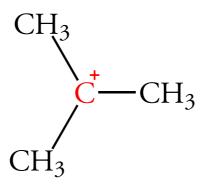
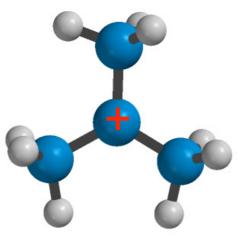
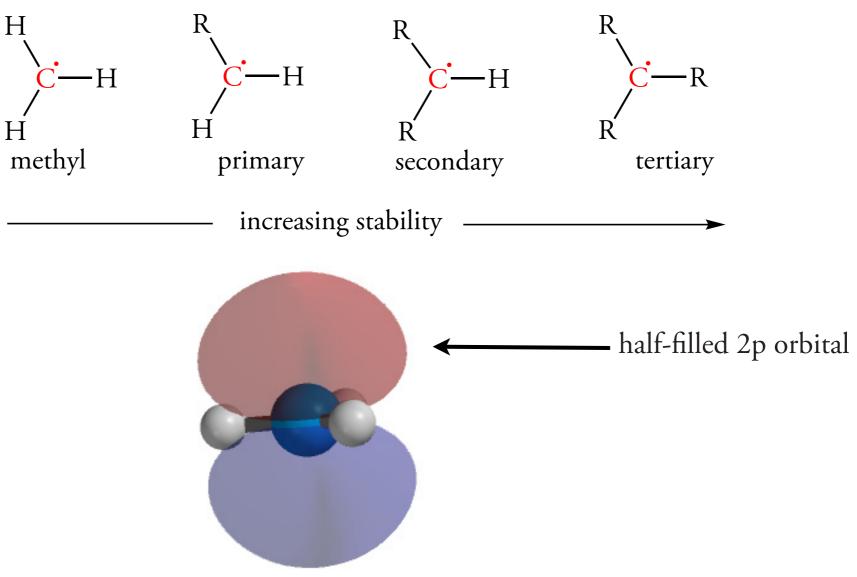




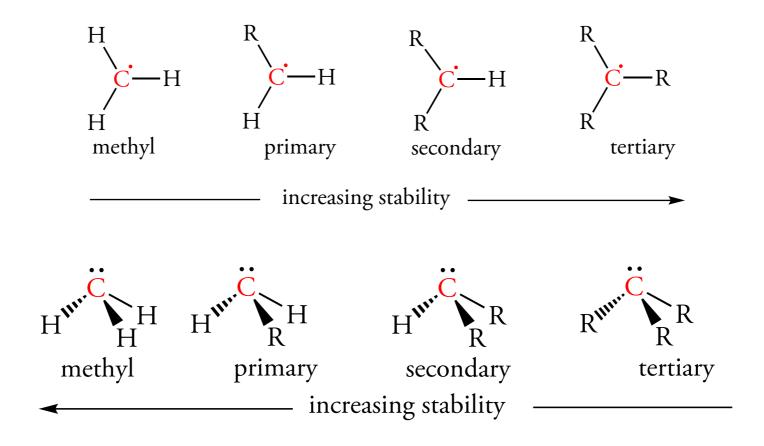
Figure 3.1 Structures of Reactive Carbon Intermediates

The tert-butyl Carbocation



tert-butyl carbocation

In a *tert*-butyl carbocation, the central carbon is sp² hybridized, and all four carbon atoms lie in the same plane.


Carbon Radicals

Methyl Radical

In a methyl radical (or any other), the central carbon is sp² hybridized, and the single, unpaired electron is in a 2p orbital orthogonal to the plane that contains the hydrogen atoms.

Carbanions

3.10 FACTORS THAT INFLUENCE REACTION RATES

Four major factors affect the rate of a reaction, and hence the rate constant for the reaction.

- 1. The structure of the reactants.
- 2. The concentration of reactants.
- 3. Temperature.
- 4. The presence of catalysts.

The Effect of Structure on Reactivity

$$CH_2 = CH_2 + Br_2 \longrightarrow Br - CH_2 - CH_2 - Br \qquad k_{rel} = 1$$

$$CH_2 = CH - CH_3 + Br_2 \longrightarrow Br - CH_2 - CHBr - CH_3 \qquad k_{rel} = 60$$

The Effect of Reactant Concentration on Reaction Rates

 $aA + bB \rightarrow product$ $v = k[A]^{m}[B]^{n}$ $CH_{3}Cl + OH^{-} \rightarrow CH_{3}OH + Cl^{-}$ $rate, v = k [CH_{3}Cl][OH^{-}]$

The Effect of Temperature on Reaction Rates

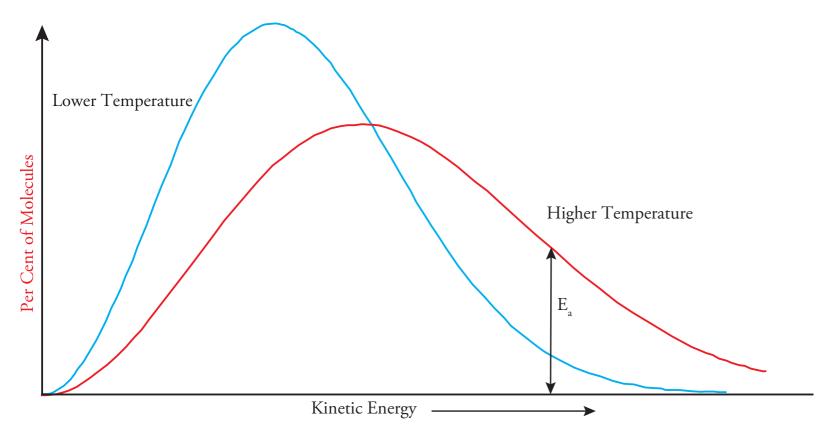
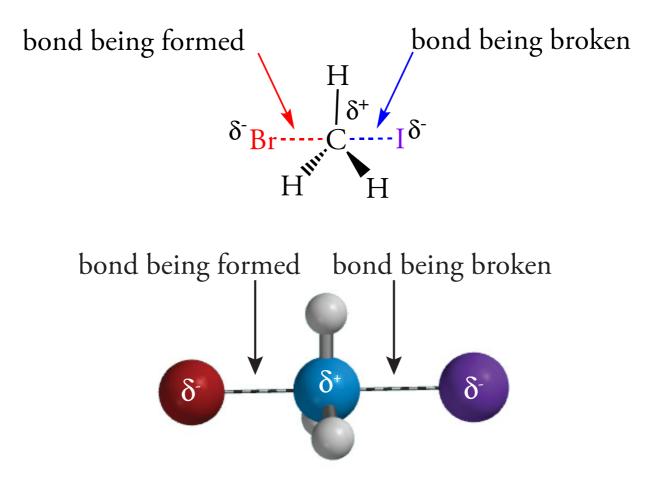


Figure 3.2 Distribution of Molecular Energies and Temperature

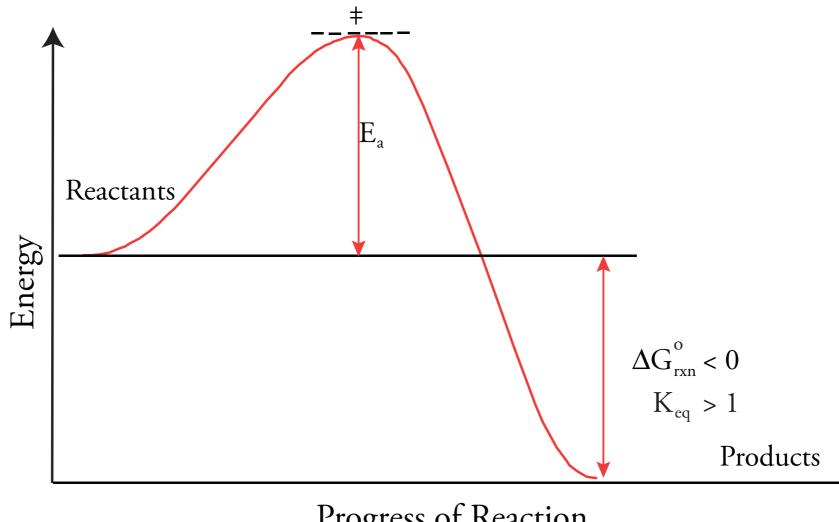
The Effect of Catalysts on Reaction Rates

 $CH_2 = CH_2 + H_2 \xrightarrow{Pt/C} H - CH_2 - CH_2 - H$

The catalyst is not consumed, even though it does interact with the reactant during the reaction. Although a catalyst increases the rate of a reaction, it does not change the equilibrium constant for the reaction.


Table 3.6 Effect of Temperature on Rates of a Substitution Reaction¹

Temperature °C	Rate Constant
	$(L \text{ mol}^{-1} \text{ sec}^{-1})$
35	2.6 x 10 ⁻⁵
45	8.5 x 10 ⁻⁵
55	2.6 x 10 ⁻⁴
65	7.8 x 10 ⁻⁴


1. The rate increases by approximately a factor of 3 for each 10° C increase in temperature.

3.11 REACTION RATE THEORY

Transition States

Reaction Coordinate Diagrams

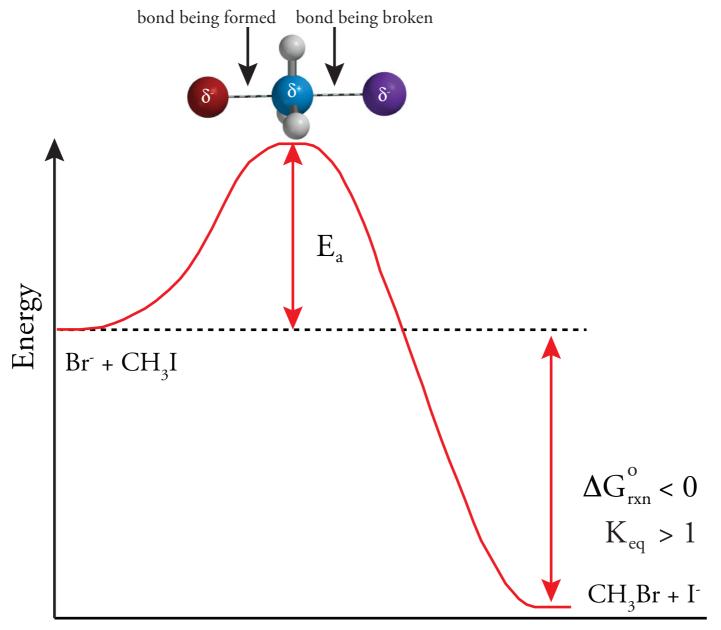
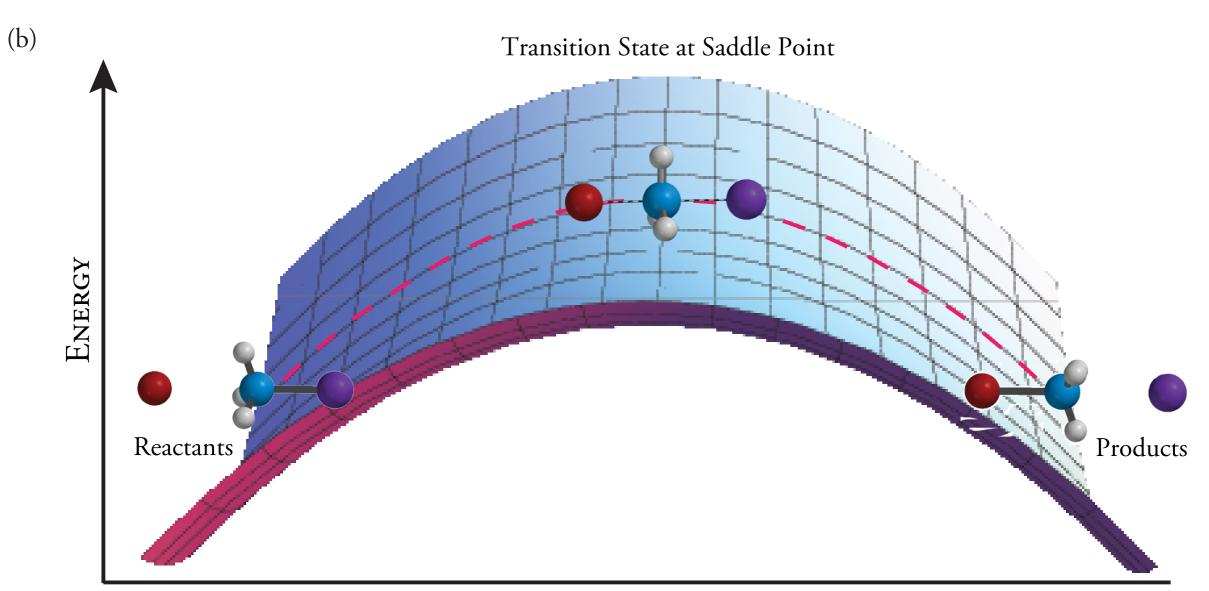

Progress of Reaction

Figure 3.4 Reaction Coordinate Diagram For an Exergonic Reaction

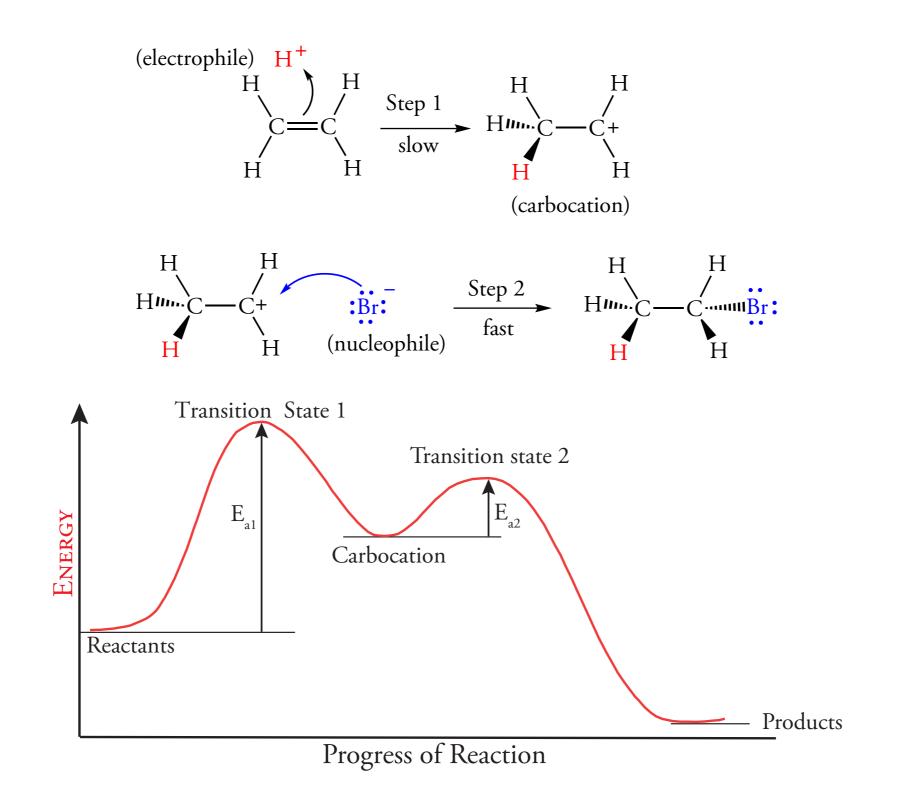
Reaction Coordinate Diagrams and Reaction Mechanisms

Figure 3.5 Reaction Coordinate Diagram For a Substitution Reaction


(a) The reaction of iodomethane with bromide ion occurs in a single step. The activation energy reflects the stability of the transition state relative to the stability of the reactants.

Progress of Reaction

Figure 3.5 Reaction Coordinate Diagram For a Substitution Reaction


(b) The transition state occurs at the highest energy position on the pathway of minimum energy; it is at a saddle point.

Reaction Coordinate

Figure 3.6 Energy Diagram for the Addition of HBr to an Alkene

The first, rate-determining step in the addition of HBr to ethene is the attack of the electrons of the double bond on a proton to give a carbocation. The second step occurs at a faster rate because the activation energy of the second step is lower than for the first step.

Catalysis A + B ----> X

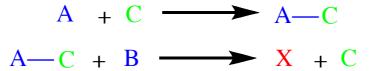
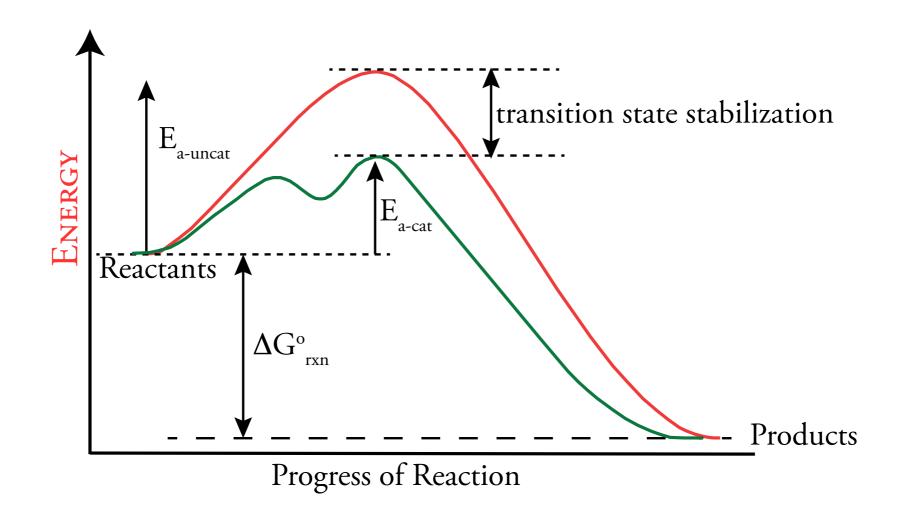
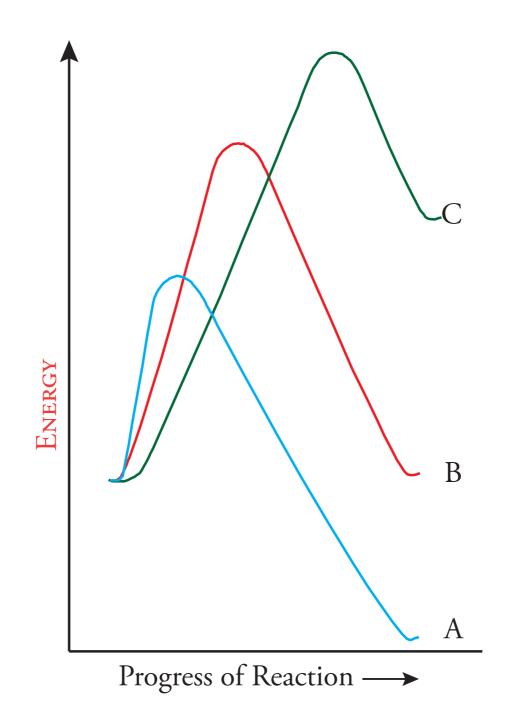



Figure 3.7 Energy Diagram for a Catalyzed and an Uncatalyzed Reaction


The activation energy for a catalyzed reaction is smaller than the activation energy for reaction in the absence of a catalyst. The catalyzed reaction may require a different number of steps than the uncatalyzed reaction.

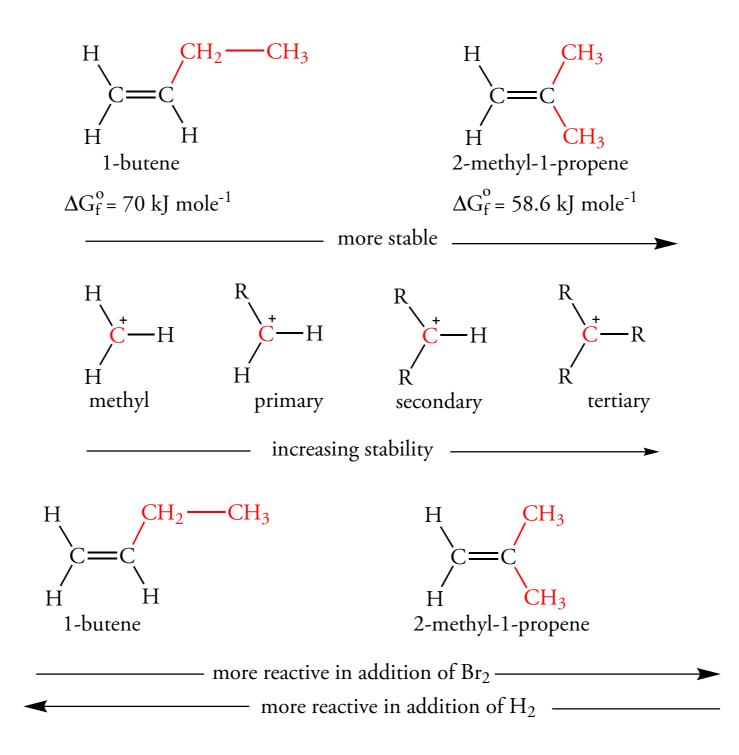

Transition State Structure: The Hammond Postulate

Figure 3.8 The Hammond Postulate

The location of the transition state along the reaction coordinate axis depends on the activation energy. Curve A for an exothermic process has an "early" transition state that is closer to the reactant side. Curve B is for a reaction with no difference in enthalpy between reactants and products. The transition state is in the middle. Curve C is for an endothermic process, which has a "late" transition state that is closer to the product side.

3.12 STABILITY AND REACTIVITY

