Introduction to organic REACTION MECHANISMS

3.1 ACID-BASE REACTIONS
 Brønsted-Lowry Acids and Base

3.1 ACID-BASE REACTIONS Lewis Acids

3.2 CHEMICAL EQUILIBRIUM AND EQUILIBRIUM CONSTANTS

$$
\begin{gathered}
\mathrm{aA}+\mathrm{bB} \xlongequal[\text { reverse reaction }]{\text { forward reaction }} \mathrm{cC}+\mathrm{dD} \\
\mathrm{~K}_{\text {equilibrium }}=\frac{[\mathrm{C}]^{\mathrm{c}}[\mathrm{D}]^{\mathrm{d}}}{[\mathrm{~A}]^{\mathrm{a}}[\mathrm{~B}]^{\mathrm{b}}} \\
\mathrm{CH}_{2}=\mathrm{CH}_{2}+\mathrm{HBr} \xlongequal{\text { ethene }} \xlongequal{\mathrm{K}_{\text {eq }}} \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{Br} \\
\mathrm{~K}_{\text {equilibrium }}=\frac{\left[\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{Br}\right]}{\left[\mathrm{CH}_{2}=\mathrm{CH}_{2}\right][\mathrm{HBr}]}=10^{8}
\end{gathered}
$$

$$
\mathrm{K}_{\text {equilibrium }}=\frac{\left[\mathrm{CH}_{3} \mathrm{CO}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}\right]\left[\mathrm{H}_{2} \mathrm{O}\right]}{\left[\mathrm{CH}_{3} \mathrm{CO}_{2} \mathrm{H}\right]\left[\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OH}\right]}=4.0
$$

3.2 CHEMICAL EQUILIBRIUM AND EQUILIBRIUM CONSTANTS
 Le Chatelier's Principle

3.3 pH AND pK VALUES

K_{a} and $\mathrm{pK}{ }_{\mathrm{a}}$

$$
\begin{gathered}
\mathrm{HA}+\mathrm{H}_{2} \mathrm{O} \xlongequal{\mathrm{~K}_{\mathrm{eq}}} \mathrm{~A}^{-}+\mathrm{H}_{3} \mathrm{O}^{+} \\
\mathrm{K}_{\text {equilibrium }}=\frac{\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]\left[\mathrm{A}^{-}\right]}{[\mathrm{HA}]\left[\mathrm{H}_{2} \mathrm{O}\right]} \\
\mathrm{K}_{\mathrm{a}}=\mathrm{K}_{\mathrm{eq}}\left[\mathrm{H}_{2} \mathrm{O}\right]=\frac{\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]\left[\mathrm{A}^{-}\right]}{[\mathrm{HA}]}
\end{gathered}
$$

Table 3.1
K_{a} and pK Values of Common Acids

Acid	K_{a}	pK_{a}
HBr	10^{9}	-9
HCl	10^{7}	-7
$\mathrm{H}_{2} \mathrm{SO}_{4}$	10^{5}	-5
HNO_{3}	10^{1}	-1
HF	6×10^{-4}	3.2
$\mathrm{CH}_{3} \mathrm{CO}_{2} \mathrm{H}$	2×10^{-5}	4.7
$\left(\mathrm{CF}_{3}\right)_{3} \mathrm{COH}$	2×10^{-5}	4.7
$\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{SH}$	3×10^{-11}	10.6
$\mathrm{CF}_{3} \mathrm{CH}_{2} \mathrm{OH}$	4×10^{-13}	12.4
$\mathrm{CH}_{3} \mathrm{OH}$	3×10^{-16}	15.5
$\left(\mathrm{CH}_{3}\right)_{3} \mathrm{COH}$	1×10^{-18}	18
$\mathrm{CCl}_{3} \mathrm{H}$	10^{-25}	25
$\mathrm{HC}_{\mathrm{C}} \mathrm{CH}$	10^{-25}	25
NH_{3}	10^{-36}	36
$\mathrm{CH}_{2}=\mathrm{CH}$	10^{-44}	44
CH_{4}	10^{-49}	49

3.3 pH AND pK VALUES

K_{b} and pK_{b}

$$
\begin{aligned}
& \mathrm{A}^{-}+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{HA}+\mathrm{OH}^{-} \\
& \mathrm{K}_{\mathrm{b}}=\mathrm{K}_{\mathrm{eq}}\left[\mathrm{H}_{2} \mathrm{O}\right]=\frac{[\mathrm{HA}]\left[\mathrm{OH}^{-}\right]}{\left[\mathrm{A}^{-}\right]}
\end{aligned}
$$

Table 3.2
K_{b} and pK_{b} Values of Common Bases

$$
\mathrm{CH}_{3} \mathrm{CO}_{2} \mathrm{H}+\mathrm{OH}^{-} \stackrel{\mathrm{K}_{\mathrm{b}}}{\rightleftharpoons} \underset{\text { strong base }}{\rightleftharpoons} \underset{\substack{\text { weak base }}}{\mathrm{CH}_{3} \mathrm{CO}_{2}^{-}+} \mathrm{H}_{2} \mathrm{O}
$$

$$
\mathrm{A}^{-}+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{HA}+\mathrm{OH}^{-}
$$

$$
\mathrm{K}_{\mathrm{b}}=\mathrm{K}_{\mathrm{eq}}\left[\mathrm{H}_{2} \mathrm{O}\right]=\frac{[\mathrm{HA}]\left[\mathrm{OH}^{-}\right]}{\left[\mathrm{A}^{-}\right]}
$$

Acid	K_{b}	pK ${ }_{\text {b }}$
	4×10^{-10}	9.4
$\mathrm{CH}_{3} \mathrm{CO}_{2}{ }^{-}$	5×10^{-10}	9.3
$\mathrm{C} \equiv \mathrm{N}^{-}$	1.6×10^{-5}	4.8
NH_{3}	1.7×10^{-5}	4.8
$\mathrm{CH}_{3} \mathrm{NH}_{2}$	4.3×10^{-4}	3.4
$\mathrm{CH}_{3} \mathrm{O}^{-}$	3×10^{-16}	-1.5

3.3 pH AND pK VALUES

K_{b} and p_{b}

Table 3.3
K_{b} and K_{a}, and pK_{a} and pK_{b} Values of Amines and Ammonium Ions

Compound	K_{b}	K_{a}	pK_{a}	pK_{b}
NH_{3}	1.8×10^{-5}	5.5×10^{-10}	4.74	9.26
$\mathrm{CH}_{3} \mathrm{NH}_{2}$	4.6×10^{-4}	2.2×10^{-11}	3.34	10.7
$\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{NH}_{2}$	4.8×10^{-4}	2.1×10^{-11}	3.20	10.8
$\mathrm{CH}_{3} \mathrm{NHCH}_{3}$	4.7×10^{-4}	2.1×10^{-11}	3.20	10.8

3.3 pH AND pK VALUES

Applying pK ${ }_{a}$ Values in Organic Acid-Base Reactions

$$
\begin{gathered}
\mathrm{HA}+\mathrm{B}^{-} \rightleftharpoons \mathrm{A}^{-}+\mathrm{HB} \\
\mathrm{~K}_{\mathrm{eq}}=\frac{\mathrm{K}_{\mathrm{HA}}}{\mathrm{~K}_{\mathrm{HB}}} \\
\mathrm{pK}_{\mathrm{eq}}=\mathrm{pK}_{\mathrm{HA}}-\mathrm{pK}_{\mathrm{HB}} \\
\mathrm{H}-\mathrm{C} \equiv \mathrm{C}-\mathrm{H}+: \mathrm{B}^{-} \rightleftharpoons \mathrm{H}-\mathrm{C} \equiv \mathrm{C}^{-}+\mathrm{H}-\mathrm{B} \\
\mathrm{H}-\mathrm{C} \equiv \mathrm{C}-\mathrm{H}+\mathrm{HỌ̣}:=\mathrm{H}=\mathrm{C} \equiv \mathrm{C}:^{-}+\mathrm{H}-\mathrm{OH} \quad \mathrm{~K}_{\mathrm{eq}}=10^{-9} \\
\mathrm{H}-\mathrm{C} \equiv \mathrm{C}-\mathrm{H}+: \stackrel{-}{\mathrm{N}} \mathrm{H}_{2} \\
\mathrm{C}-\mathrm{C} \equiv \mathrm{C}:^{-}+\mathrm{H}-\mathrm{N}_{2} \quad \mathrm{~K}_{\mathrm{eq}}=10^{11}
\end{gathered}
$$

3.4 EFFECT OF STRUCTURE ON ACIDITY
 \section*{Effect of Periodic Trends on Acidity and Basicity}

sulfuric acid, a strong acid

ammonia
pK b 4.74
(weak base)

methane sulfonic acid,
a strong acid

ethylamine
pK 3.25
(weak base)

3.4 EFFECT OF STRUCTURE ON ACIDITY

Effect of Resonance on Acidity and Basicity

$$
\begin{aligned}
& \mathrm{CH}_{3} \mathrm{OH}+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{CH}_{3} \mathrm{O}^{-}+\mathrm{H}_{3} \mathrm{O}^{+} \quad \mathrm{K}_{\mathrm{a}}=10^{-16} \\
& \mathrm{CH}_{3} \mathrm{CO}_{2} \mathrm{H}+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{CH}_{3} \mathrm{CO}_{2}^{-}+\mathrm{H}_{3} \mathrm{O}^{+} \quad \mathrm{K}_{\mathrm{a}}=1.8 \times 10^{-5}
\end{aligned}
$$

Ethanoate ion (acetate), is resonance stabilized, which increases K_{a} relative to ethanol.

3.4 EFFECT OF STRUCTURE ON ACIDITY

Inductive Effects

2-chlorobutanoic acid

$\mathrm{pK}=2.86$
3-chlorobutanoic acid
$\mathrm{pK}_{\mathrm{a}}=4.82$
$\mathrm{pK}_{\mathrm{a}}=4.02$

3.4 EFFECT OF STRUCTURE ON ACIDITY

Effect of Hybridization on Acidity

$$
\begin{array}{ccc}
\mathrm{CH}_{3}-\mathrm{CH}_{3} & \mathrm{CH}_{2}=\mathrm{CH}_{2} & \mathrm{H}-\mathrm{C} \equiv \mathrm{C}- \\
\text { ethane } & \text { ethene } & \text { ethyne } \\
\mathrm{K}_{\mathrm{a}}=10^{-49} & \mathrm{~K}_{\mathrm{a}}=10^{-44} & \mathrm{~K}_{\mathrm{a}}=10^{-25}
\end{array}
$$

3.5 STANDARD FREE ENERGY CHANGES IN CHEMICAL REACTIONS

The Standard Free Energy Change and the Equilibrium Constant

$$
\begin{aligned}
& \Delta \mathrm{G}_{\mathrm{rxn}}^{\circ}=\Delta \mathrm{G}_{\mathrm{f}}^{\circ} \text { (products) }-\Delta \mathrm{G}_{\mathrm{f}}^{\circ} \text { (reactants) } \\
& \Delta \mathrm{G}_{\mathrm{rxn}}^{\circ}=-2.303 \mathrm{RTlogK}_{e q} \\
& \mathrm{R}=8.314 \mathrm{kj} \mathrm{kelvin}^{-1} \text { mole }^{-1}\left(1.987 \text { cal } \text { kelvin }^{-1} \text { mole }^{-1}\right) \\
& \mathrm{T}=\text { absolute temperature }(\text { kelvin })
\end{aligned}
$$

Table 3.4
Relation between $\Delta \mathrm{G}^{\circ}\left(\mathrm{kJ}\right.$ mole $\left.{ }^{-1}\right)$ and $\mathrm{K}_{\text {eq }}$ at $25^{\circ} \mathrm{C}$

$$
X \rightleftharpoons Y
$$

ΔG°	$K_{e q}$	$\% Y$	ΔG°	$K_{e q}$	$\% Y$
0.00	1.0	50	-4.3	5.67	85
-0.50	1.22	55	-5.45	9.00	90
-1.0	1.50	60	-7.30	19.0	95
-1.5	1.86	65	-9.65	49.0	98
-2.1	2.33	70	-11	99	99
-2.7	3.00	75	-17	999.9	99.9
-3.4	4.00	80	-22	9999.9	99.99

3.6 ENTHALPY CHANGES IN CHEMICAL REACTIONS

$$
\mathrm{mA}+\mathrm{nB} \rightleftharpoons \mathrm{pX}+\mathrm{qY}+\text { energy }
$$

1. If heat flows out of the reaction into the surroundings, the reaction is exothermic, $\Delta \mathrm{H}^{\circ}{ }^{\mathrm{xnn}}<0$.
2. If heat flows into of the reaction from the surroundings, the reaction is endothermic, $\Delta \mathrm{H}_{\mathrm{rxn}}^{\circ}>0$.

Standard conditions, $\Delta \mathrm{H}^{\circ}$, refer to measurements made at 298 K and 1 atm .

1. The standard enthalpy of formation $\left(\Delta \mathrm{H}_{\mathrm{f}}{ }_{\mathrm{f}}\right)$ of a compound is the enthalpy change when the compound is formed in its standard state from the elements in their standard states. The superscript $\left({ }^{\circ}\right)$ indicates that the reaction occurs under standard conditions.
2. The standard state of any element or compound is its most stable form at 298 K and 1 atm pressure.
3. The standard enthalpy of formation of any element in its standard state is defined as 0 kJ mole ${ }^{-1}$.

$$
\Delta \mathrm{H}_{\mathrm{rxn}}^{\circ}=\left[\mathrm{p} \Delta \mathrm{H}_{\mathrm{f}}^{\circ}(\mathrm{X})+\mathrm{q} \Delta \mathrm{H}_{\mathrm{f}}^{\circ}(\mathrm{Y})\right]-\left[\mathrm{m} \Delta \mathrm{H}_{\mathrm{f}}^{\circ}(\mathrm{A})+\mathrm{n} \Delta \mathrm{H}_{\mathrm{f}}^{\circ}(\mathrm{B})\right]
$$

3.7 BOND DISSOCIATION ENERGIES

3.8 INTRODUCTION TO REACTION MECHANISMS

Concerted and Multistep Reactions

A one step, concerted reaction, has no reaction intermediates.

Multistep reaction.

Step 1. An intermediate forms.

$$
\underset{\text { reactant }}{\mathrm{A} \xrightarrow[\text { intermediate }]{\text { Step 1 }}} \mathrm{M}
$$

Step 2. The intermediate is converted to product.

$$
\underset{\text { intermediate }}{\mathrm{M}} \xrightarrow[\text { product }]{\mathrm{Step} 2} \underset{ }{\mathrm{P}}
$$

The slowest individual step, is the rate-determining step.

Types of Bond Cleavage

$$
\widehat{\mathrm{X}} \longrightarrow \mathrm{X} \cdot+\mathrm{Y}
$$

general reaction for homolytic bond cleavage

$$
\mathrm{X} \xrightarrow[\mathrm{Y}]{\longrightarrow} \mathrm{X}^{+}+: \mathrm{Y}^{-}
$$

general reaction for heterolytic bond cleavage

(a carbanion)
A carbanion can act as a Lewis base or as a "nucleus loving" species called a nucleophile.

A carbocation can act as a Lewis acid or as a "electron loving" species called an electrophile.

1. If Y is a less electronegative element, such as a metal, the bond tends to break heterolytically to form a carbanion.
2. If Y is a nonelectronegative element other than carbon, a halogen atom, for example, the bond has the opposite polarity, and tends to break heterolytically to form a carbocation.

Figure 3.1 Structures of Reactive Carbon Intermediates

The tert-butyl Carbocation

tert-butyl carbocation

In a tert-butyl carbocation, the central carbon is sp^{2} hybridized, and all four carbon atoms lie in the same plane.

Carbon Radicals

increasing stability

Methyl Radical

In a methyl radical (or any other), the central carbon is sp^{2} hybridized, and the single, unpaired electron is in a 2 p orbital orthogonal to the plane that contains the hydrogen atoms.

Carbanions

primary

tertiary
\longleftarrow increasing stability

3.10 FACTORS THAT INFLUENCE REACTION RATES

Four major factors affect the rate of a reaction, and hence the rate constant for the reaction.

1. The structure of the reactants.
2. The concentration of reactants.
3. Temperature.
4. The presence of catalysts.

The Effect of Structure on Reactivity

$$
\begin{gathered}
\mathrm{CH}_{2}=\mathrm{CH}_{2}+\mathrm{Br}_{2} \longrightarrow \mathrm{Br}-\mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{Br} \quad \mathrm{k}_{\text {rel }}=1 \\
\mathrm{CH}_{2}=\mathrm{CH}-\mathrm{CH}_{3}+\mathrm{Br}_{2} \longrightarrow \mathrm{Br}-\mathrm{CH}_{2}-\mathrm{CHBr}-\mathrm{CH}_{3} \quad \mathrm{k}_{\text {rel }}=60
\end{gathered}
$$

The Effect of Reactant Concentration on Reaction Rates

$$
\begin{aligned}
& \mathrm{aA}+\mathrm{bB} \rightarrow \text { product } \\
& \mathrm{v}=\mathrm{k}[\mathrm{~A}]^{\mathrm{m}}[\mathrm{~B}]^{\mathrm{n}} \\
& \mathrm{CH}_{3} \mathrm{Cl}+\mathrm{OH}^{-} \rightarrow \mathrm{CH}_{3} \mathrm{OH}+\mathrm{Cl}^{-} \\
& \text {rate, } \mathrm{v}=\mathrm{k}\left[\mathrm{CH}_{3} \mathrm{Cl}\right]\left[\mathrm{OH}^{-}\right]
\end{aligned}
$$

The Effect of Temperature on Reaction Rates

Table 3.6 Effect of Temperature on Rates of a Substitution Reaction ${ }^{1}$

Temperature ${ }^{\circ} \mathrm{C}$	Rate Constant $\left(\mathrm{L} \mathrm{mol}^{-1} \mathrm{sec}^{-1}\right)$
35	2.6×10^{-5}
45	8.5×10^{-5}
55	2.6×10^{-4}
65	7.8×10^{-4}

1. The rate increases by approximately a factor of 3 for each $10^{\circ} \mathrm{C}$ increase in temperature.

The Effect of Catalysts on Reaction Rates

$$
\mathrm{CH}_{2}=\mathrm{CH}_{2}+\mathrm{H}_{2} \xrightarrow{\mathrm{Pt} / \mathrm{C}} \mathrm{H}-\mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{H}
$$

The catalyst is not consumed, even though it does interact with the reactant during the reaction. Although a catalyst increases the rate of a reaction, it does not change the equilibrium constant for the reaction.

3.11 REACTION RATE THEORY

Transition States

bond being formed bond being broken

Reaction Coordinate Diagrams

Figure 3.4 Reaction Coordinate Diagram For an Exergonic Reaction

Reaction Coordinate Diagrams and Reaction Mechanisms

Figure 3.5 Reaction Coordinate Diagram For a Substitution Reaction
(a) The reaction of iodomethane with bromide ion occurs in a single step. The activation energy reflects the stability of the transition state relative to the stability of the reactants.

Figure 3.5 Reaction Coordinate Diagram For a Substitution Reaction
(b) The transition state occurs at the highest energy position on the pathway of minimum energy; it is at a saddle point.
(b)

Transition State at Saddle Point

Figure 3.6 Energy Diagram for the Addition of HBr to an Alkene The first, rate-determining step in the addition of HBr to ethene is the attack of the electrons of the double bond on a proton to give a carbocation. The second step occurs at a faster rate because the activation energy of the second step is lower than for the first step.

Progress of Reaction

Catalysis

Figure 3.7 Energy Diagram for a Catalyzed and an Uncatalyzed Reaction The activation energy for a catalyzed reaction is smaller than the activation energy for reaction in the absence of a catalyst. The catalyzed reaction may require a different number of steps than the uncatalyzed reaction.

Transition State Structure: The Hammond Postulate

Figure 3.8 The Hammond Postulate
The location of the transition state along the reaction coordinate axis depends on the activation energy. Curve A for an exothermic process has an "early" transition state that is closer to the reactant side. Curve B is for a reaction with no difference in enthalpy between reactants and products. The transition state is in the middle. Curve C is for an endothermic process, which has a "late" transition state that is closer to the product side.

3.12 STABILITY AND REACTIVITY

primary

 —— increasing stability

more reactive in addition of Br_{2}

more reactive in addition of H_{2}

